Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales.

Identifieur interne : 003539 ( Main/Exploration ); précédent : 003538; suivant : 003540

Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales.

Auteurs : Michael S. Barker [Canada] ; Heiko Vogel ; M Eric Schranz

Source :

RBID : pubmed:20333207

Abstract

The analysis of the Arabidopsis genome revealed evidence of three ancient polyploidy events in the evolution of the Brassicaceae, but the exact phylogenetic placement of these events is still not resolved. The most recent event is called the At-alpha (alpha) or 3R, the intermediate event is referred to as the At-beta (beta) or 2R, and the oldest is the At-gamma (gamma) or 1R. It has recently been established that At-gamma is shared with other Rosids, including papaya (Carica), poplar (Populus), and grape (Vitis), whereas data to date suggest that At-alpha is Brassicaceae specific. To address more precisely when the At-alpha and At-beta events occurred and which plant lineages share these paleopolyploidizations, we sequenced and analyzed over 4,700 normalized expressed sequence tag sequences from the Cleomaceae, the sister family to the Brassicaceae. Analysis of these Cleome data with homologous sequences from other Rosid genomes (Arabidopsis, Carica, Gossypium, Populus, and Vitis) yielded three major findings: 1) confirmation of a Cleome-specific paleopolyploidization (Cs-alpha) that is independent of the Brassicaceae At-alpha paleopolyploidization; 2) Cleome and Arabidopsis share the At-beta duplication, which is lacking from papaya within the Brassicales; and 3) rates of molecular evolution are faster for the herbaceous annual taxa Arabidopsis and Cleome than the other predominantly woody perennial Rosid lineages. These findings contribute to our understanding of the dynamics of genome duplication and evolution within one of the most comprehensively surveyed clades of plants, the Rosids, and clarify the complex history of the At-alpha, At-beta, and At-gamma duplications of Arabidopsis.

DOI: 10.1093/gbe/evp040
PubMed: 20333207
PubMed Central: PMC2817432


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales.</title>
<author>
<name sortKey="Barker, Michael S" sort="Barker, Michael S" uniqKey="Barker M" first="Michael S" last="Barker">Michael S. Barker</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany and The Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany and The Biodiversity Research Centre, University of British Columbia, Vancouver</wicri:regionArea>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique</region>
</placeName>
<orgName type="university">Université de la Colombie-Britannique</orgName>
</affiliation>
</author>
<author>
<name sortKey="Vogel, Heiko" sort="Vogel, Heiko" uniqKey="Vogel H" first="Heiko" last="Vogel">Heiko Vogel</name>
</author>
<author>
<name sortKey="Schranz, M Eric" sort="Schranz, M Eric" uniqKey="Schranz M" first="M Eric" last="Schranz">M Eric Schranz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:20333207</idno>
<idno type="pmid">20333207</idno>
<idno type="doi">10.1093/gbe/evp040</idno>
<idno type="pmc">PMC2817432</idno>
<idno type="wicri:Area/Main/Corpus">003708</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003708</idno>
<idno type="wicri:Area/Main/Curation">003708</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003708</idno>
<idno type="wicri:Area/Main/Exploration">003708</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales.</title>
<author>
<name sortKey="Barker, Michael S" sort="Barker, Michael S" uniqKey="Barker M" first="Michael S" last="Barker">Michael S. Barker</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany and The Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany and The Biodiversity Research Centre, University of British Columbia, Vancouver</wicri:regionArea>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique</region>
</placeName>
<orgName type="university">Université de la Colombie-Britannique</orgName>
</affiliation>
</author>
<author>
<name sortKey="Vogel, Heiko" sort="Vogel, Heiko" uniqKey="Vogel H" first="Heiko" last="Vogel">Heiko Vogel</name>
</author>
<author>
<name sortKey="Schranz, M Eric" sort="Schranz, M Eric" uniqKey="Schranz M" first="M Eric" last="Schranz">M Eric Schranz</name>
</author>
</analytic>
<series>
<title level="j">Genome biology and evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The analysis of the Arabidopsis genome revealed evidence of three ancient polyploidy events in the evolution of the Brassicaceae, but the exact phylogenetic placement of these events is still not resolved. The most recent event is called the At-alpha (alpha) or 3R, the intermediate event is referred to as the At-beta (beta) or 2R, and the oldest is the At-gamma (gamma) or 1R. It has recently been established that At-gamma is shared with other Rosids, including papaya (Carica), poplar (Populus), and grape (Vitis), whereas data to date suggest that At-alpha is Brassicaceae specific. To address more precisely when the At-alpha and At-beta events occurred and which plant lineages share these paleopolyploidizations, we sequenced and analyzed over 4,700 normalized expressed sequence tag sequences from the Cleomaceae, the sister family to the Brassicaceae. Analysis of these Cleome data with homologous sequences from other Rosid genomes (Arabidopsis, Carica, Gossypium, Populus, and Vitis) yielded three major findings: 1) confirmation of a Cleome-specific paleopolyploidization (Cs-alpha) that is independent of the Brassicaceae At-alpha paleopolyploidization; 2) Cleome and Arabidopsis share the At-beta duplication, which is lacking from papaya within the Brassicales; and 3) rates of molecular evolution are faster for the herbaceous annual taxa Arabidopsis and Cleome than the other predominantly woody perennial Rosid lineages. These findings contribute to our understanding of the dynamics of genome duplication and evolution within one of the most comprehensively surveyed clades of plants, the Rosids, and clarify the complex history of the At-alpha, At-beta, and At-gamma duplications of Arabidopsis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">20333207</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>05</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1759-6653</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1</Volume>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Genome biology and evolution</Title>
<ISOAbbreviation>Genome Biol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales.</ArticleTitle>
<Pagination>
<MedlinePgn>391-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/gbe/evp040</ELocationID>
<Abstract>
<AbstractText>The analysis of the Arabidopsis genome revealed evidence of three ancient polyploidy events in the evolution of the Brassicaceae, but the exact phylogenetic placement of these events is still not resolved. The most recent event is called the At-alpha (alpha) or 3R, the intermediate event is referred to as the At-beta (beta) or 2R, and the oldest is the At-gamma (gamma) or 1R. It has recently been established that At-gamma is shared with other Rosids, including papaya (Carica), poplar (Populus), and grape (Vitis), whereas data to date suggest that At-alpha is Brassicaceae specific. To address more precisely when the At-alpha and At-beta events occurred and which plant lineages share these paleopolyploidizations, we sequenced and analyzed over 4,700 normalized expressed sequence tag sequences from the Cleomaceae, the sister family to the Brassicaceae. Analysis of these Cleome data with homologous sequences from other Rosid genomes (Arabidopsis, Carica, Gossypium, Populus, and Vitis) yielded three major findings: 1) confirmation of a Cleome-specific paleopolyploidization (Cs-alpha) that is independent of the Brassicaceae At-alpha paleopolyploidization; 2) Cleome and Arabidopsis share the At-beta duplication, which is lacking from papaya within the Brassicales; and 3) rates of molecular evolution are faster for the herbaceous annual taxa Arabidopsis and Cleome than the other predominantly woody perennial Rosid lineages. These findings contribute to our understanding of the dynamics of genome duplication and evolution within one of the most comprehensively surveyed clades of plants, the Rosids, and clarify the complex history of the At-alpha, At-beta, and At-gamma duplications of Arabidopsis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barker</LastName>
<ForeName>Michael S</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and The Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vogel</LastName>
<ForeName>Heiko</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schranz</LastName>
<ForeName>M Eric</ForeName>
<Initials>ME</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>10</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol Evol</MedlineTA>
<NlmUniqueID>101509707</NlmUniqueID>
<ISSNLinking>1759-6653</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arabidopsis</Keyword>
<Keyword MajorTopicYN="N">Brassicales</Keyword>
<Keyword MajorTopicYN="N">Cleome</Keyword>
<Keyword MajorTopicYN="N">polyploidy</Keyword>
<Keyword MajorTopicYN="N">transcriptome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20333207</ArticleId>
<ArticleId IdType="doi">10.1093/gbe/evp040</ArticleId>
<ArticleId IdType="pmc">PMC2817432</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 Oct;15(10):1312-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9787437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2009 Jan;96(1):336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Nov;25(11):2445-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18728074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1152-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16617098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1944-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1994 Sep;11(5):725-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7968486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1772-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jun;16(6):738-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000 Feb-Apr;7(1-2):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W557-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Nov;20(11):591-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Mar;18(3):440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Feb;13(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:443-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2004 Oct;47(5):868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15499401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:433-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Oct;17(10):1483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3403-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 9;444(7116):171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Jan;24(1):90-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16997907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2730-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Oct 3;322(5898):86-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):817-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2005 Jun;54(3):441-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16012110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1997 Oct;13(5):555-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 25;320(5875):486-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):3-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jun;18(6):1348-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16632643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19667210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D13-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Apr;51(6):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jul;16(7):805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2060-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2006143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1996 Jul 15;24(14):2730-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8759004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique</li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Schranz, M Eric" sort="Schranz, M Eric" uniqKey="Schranz M" first="M Eric" last="Schranz">M Eric Schranz</name>
<name sortKey="Vogel, Heiko" sort="Vogel, Heiko" uniqKey="Vogel H" first="Heiko" last="Vogel">Heiko Vogel</name>
</noCountry>
<country name="Canada">
<region name="Colombie-Britannique">
<name sortKey="Barker, Michael S" sort="Barker, Michael S" uniqKey="Barker M" first="Michael S" last="Barker">Michael S. Barker</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003539 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003539 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20333207
   |texte=   Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20333207" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020